综合点评 | ||
本次考试阅读难度总体持平,主要围绕生物和社科类话题考的比较多,也有少量天文类文章。 | ||
Passage one | 学科分类 | 题目 |
社科-历史 | 纸在欧洲的发展 | |
内容回忆 | 待补充 | |
参考阅读 | Early writing systems Scholars agree that writing originated somewhere inthe Middle East, probably Mesopotamia, around the fourth millennium B.C.E. It is from the great libraries and word-hoards of these ancient lands that the first texts emerged. They were written on damp clay tablets with a wedged (or V-shaped) stick; since the Latin word for wedge is cunea, the texts are called cuneiform. The clay tablets usually were not fired; sun drying was probably reckoned enough to preserve the text for as long as it was being used. Fortunately, however, many tablets survived because they were accidentally fired when the buildings they were stored in burned.
Cuneiform writing lasted for some 3,000 years, in avast line of succession that ran through Sumer, Akkad, Assyria, Nineveh, and Babylon, and preserved for us fifteen languages in an area represented by modern-day Iraq, Syria, and western Iran. The oldest cuneiform texts recorded the transactions of tax collectors and merchants, the receipts and bills of sale of an urban society. They had to do with things like grain, goats, and real estate. Later, Babylonian scribes recorded the laws and kept other kinds of records. Knowledge conferred power. As a result, the scribes were assigned their own goddess, Nisaba, later replaced by the god Nabu of Borsippa, whose symbol is neither weapon nor dragon but something far more fearsome, the cuneiform stick. Cuneiform texts on science, astronomy, medicine, and mathematics abound, some offering astoundingly precise data. One tablet records the speed of the Moon over 248 days; another documents an early sighting of Halley's Comet, from September 22 to September 28, 164 B.C.E. More esoteric texts attempt to explain old Babylonian customs, such as the procedure for curing someone who is ill, which included rubbing tar and gypsum on the sick person's door and drawing a design at the foot of the person's bed. What is clear from the vast body of texts (some 20,000 tablets were found in King Ashurbanipal's library at Nineveh) is that scribes took pride in their writing and knowledge.
The foremost cuneiform text, the Babylonian Epic of Gilgamesh, deals with humankind's attempts to conquer time. In it, Gilgamesh, king and warrior, is crushed by the death of his best friend and so sets out on adventures that prefigure mythical heroes of ancient Greek legends such as Hercules. His goal is not just to survive his ordeals but to make sense of this life. Remarkably, versions of Gilgamesh span 1,500 years, between 2100 B.C.E and 600 B.C.E., making the story the epic of an entire civilization.of The ancient Egyptians invented a different way of writing and a new substance to write on - papyrus, a precursor of paper, made from a wetland plant. The Greeks had a special name for this writing: hieroglyphic, literally "sacred writing". This, they thought, was language fit for the gods, which explains why it was carved on walls of pyramids and other religious structures. Perhaps hieroglyphics are Egypt's great contribution to the history of writing: hieroglyphic wiring, in use from 3100 B.C.E. until 394 C.E., resulted in the creation of texts that were fine art as well as communication. Egypt gave us the tradition of the scribe not just as educated person but as artist and calligrapher.
Scholars have detected some 6,000 separate hieroglyphic characters in use over the history of Egyptian writing, but it appears that never more than a thousand were in use during any one period. It still seems a lot to recall, but what was lost in efficiency was more than made up for in the beauty and richness of the texts. Writing was meant to impress the eye with the vastness of creating itself. Each symbol or glyph - the flowering reed (pronounced like V), the owl ("m"), the quail chick ("w"), etcetera - was a tiny work of art. Manuscripts were compiled with an eye to the overall design. Egyptologists have noticed that the glyphs that constitute individual words were sometimes shuffled to make the text more pleasing to the eye with little regard for sound or sense. | |
Passage two | 学科分类 | 题目 |
自然-生物 | 植物生长周期的规律 | |
内容回忆 | 待补充 | |
参考阅读 | Minerals and Plants Research has shown that certain minerals are required by plants for normal growth and development. The soil is the source of these minerals, which are absorbed by the plant with the water from the soil. Even nitrogen, which is a gas in its elemental state, is normally absorbed from the soil as nitrate ions. Some soils are notoriously deficient in micro nutrients and are therefore unable to support most plant life. So-called serpentine soils, for example, are deficient in calcium, and only plants able to tolerate low levels of this mineral can survive. In modern agriculture, mineral depletion of soils is a major concern, since harvesting crops interrupts the recycling of nutrients back to the soil.
Mineral deficiencies can often be detected by specific symptoms such as chlorosis (loss of chlorophyll resulting in yellow or white leaf tissue), necrosis (isolated dead patches), anthocyanin formation (development of deep red pigmentation of leaves or stem), stunted growth, and development of woody tissue in an herbaceous plant. Soils are most commonly deficient in nitrogen and phosphorus. Nitrogen-deficient plants exhibit many of the symptoms just described. Leaves develop chlorosis; stems are short and slender, and anthocyanin discoloration occurs on stems, petioles, and lower leaf surfaces. Phosphorus-deficient plants are often stunted, with leaves turning a characteristic dark green, often with the accumulation of anthocyanin. Typically, older leaves are affected first as the phosphorus is mobilized to young growing tissue. Iron deficiency is characterized by chlorosis between veins in young leaves.
Much of the research on nutrient deficiencies is based on growing plants hydroponically, that is, in soilless liquid nutrient solutions. This technique allows researchers to create solutions that selectively omit certain nutrients and then observe the resulting effects on the plants. Hydroponics has applications beyond basic research, since it facilitates the growing of greenhouse vegetables during winter. Aeroponics, a technique in which plants are suspended and the roots misted with a nutrient solution, is another method for growing plants without soil.
While mineral deficiencies can limit the growth of plants, an overabundance of certain minerals can be toxic and can also limit growth. Saline soils, which have high concentrations of sodium chloride and other salts, limit plant growth, and research continues to focus on developing salt-tolerant varieties of agricultural crops. Research has focused on the toxic effects of heavy metals such as lead, cadmium, mercury, and aluminum; however, even copper and zinc, which are essential elements, can become toxic in high concentrations. Although most plants cannot survive in these soils, certain plants have the ability to tolerate high levels of these minerals.
Scientists have known for some time that certain plants, called hyperaccumulators, can concentrate minerals at levels a hundredfold or greater than normal. A survey of known hyperaccumulators identified that 75 percent of them amassed nickel, cobalt, copper, zinc, manganese, lead, and cadmium are other minerals of choice. Hyperaccumulators run the entire range of the plant world. They may be herbs, shrubs, or trees. Many members of the mustard family, spurge family, legume family, and grass family are top hyperaccumulators. Many are found in tropical and subtropical areas of the world, where accumulation of high concentrations of metals may afford some protection against plant-eating insects and microbial pathogens.
Only recently have investigators considered using these plants to clean up soil and waste sites that have been contaminated by toxic levels of heavy metals–an environmentally friendly approach known as phytoremediation. This scenario begins with the planting of hyperaccumulating species in the target area, such as an abandoned mine or an irrigation pond contaminated by runoff. Toxic minerals would first be absorbed by roots but later relocated to the stem and leaves. A harvest of the shoots would remove the toxic compounds off site to be burned or composted to recover the metal for industrial uses. After several years of cultivation and harvest, the site would be restored at a cost much lower than the price of excavation and reburial, the standard practice for remediation of contaminated soils. For examples, in field trials, the plant alpine pennycress removed zinc and cadmium from soils near a zinc smelter, and Indian mustard, native to Pakistan and India, has been effective in reducing levels of selenium salts by 50 percent in contaminated soils. | |
Passage Three | 学科分类 | 题目 |
自然-地理 | 尼罗河对古埃及农业发展的影响 | |
内容回忆 | 待补充 | |
参考阅读 |
The Geologic History of the Mediterranean
In 1970 geologists Kenneth J. Hsu and William B. F. Ryan were collecting research data while aboard the oceanographic research vessel Glomar Challenger. An objective of this particular cruise was to investigate the floor of the Mediterranean and to resolve questions about its geologic history. One question was related to evidence that the invertebrate fauna (animals without spines) of the Mediterranean had changed abruptly about 6 million years ago. Most of the older organisms were nearly wiped out, although a few hardy species survived. A few managed to migrate into the Atlantic. Somewhat later, the migrants returned, bringing new species with them. Why did the near extinction and migrations occur?
Another task for the Glomar Challenger’s scientists was to try to determine the origin of the domelike masses buried deep beneath the Mediterranean seafloor. These structures had been detected years earlier by echo-sounding instruments, but they had never been penetrated in the course of drilling. Were they salt domes such as are common along the United States Gulf Coast, and if so, why should there have been so much solid crystalline salt beneath the floor of the Mediterranean?
With questions such as these clearly before them, the scientists aboard the Glomar Challenger proceeded to the Mediterranean to search for the answers. On August 23, 1970, they recovered a sample. The sample consisted of pebbles of hardened sediment that had once been soft, deep-sea mud, as well as granules of gypsum and fragments of volcanic rock. Not a single pebble was found that might have indicated that the pebbles came from the nearby continent. In the days following, samples of solid gypsum were repeatedly brought on deck as drilling operations penetrated the seafloor. Furthermore, the gypsum was found to possess peculiarities of composition and structure that suggested it had formed on desert flats. Sediment above and below the gypsum layer contained tiny marine fossils, indicating open-ocean conditions. As they drilled into the central and deepest part of the Mediterranean basin, the scientists took solid, shiny, crystalline salt from the core barrel. Interbedded with the salt were thin layers of what appeared to be windblown silt.
The time had come to formulate a hypothesis. The investigators theorized that about 20 million years ago, the Mediterranean was a broad seaway linked to the Atlantic by two narrow straits. Crustal movements closed the straits, and the landlocked Mediterranean began to evaporate. Increasing salinity caused by the evaporation resulted in the extermination of scores of invertebrate species. Only a few organisms especially tolerant of very salty conditions remained. As evaporation continued, the remaining brine (salt water) became so dense that the calcium sulfate of the hard layer was precipitated. In the central deeper part of the basin, the last of the brine evaporated to precipitate more soluble sodium chloride (salt). Later, under the weight of overlying sediments, this salt flowed plastically upward to form salt domes. Before this happened, however, the Mediterranean was a vast desert 3,000 meters deep. Then, about 5.5 million years ago came the deluge. As a result of crustal adjustments and faulting, the Strait of Gibraltar, where the Mediterranean now connects to the Atlantic, opened, and water cascaded spectacularly back into the Mediterranean. Turbulent waters tore into the hardened salt flats, broke them up, and ground them into the pebbles observed in the first sample taken by the Challenger. As the basin was refilled, normal marine organisms returned. Soon layers of oceanic ooze began to accumulate above the old hard layer.
The salt and gypsum, the faunal changes, and the unusual gravel provided abundant evidence that the Mediterranean was once a desert. | |
Passage Four | 学科分类 | 题目 |
生物-动物 | 海洋哺乳动物 | |
内容回忆 | 海洋哺乳动物从陆地到海洋后,身体器官发生了什么变化 | |
参考阅读 | The Pace of Evolutionary Change
A heated debate has enlivened recent studies of evolution. Darwin’s original thesis, and the viewpoint supported by evolutionary gradualists, is that species change continuously but slowly and in small increments. Such changes are all but invisible over the short time scale of modern observations, and, it is argued, they are usually obscured by innumerable gaps in the imperfect fossil record. Gradualism, with its stress on the slow pace of change, is a comforting position, repeated over and over again in generations of textbooks. By the early twentieth century, the question about the rate of evolution had been answered in favor of gradualism to most biologists’ satisfaction.
Sometimes a closed question must be reopened as new evidence or new arguments based on old evidence come to light. In 1972 paleontologist Stephen Jay Gould and Niles Eldredge challenged conventional wisdom with an opposing viewpoint, the punctuated equilibrium hypothesis, which posits that species give rise to new species in relatively sudden bursts, without a lengthy transition period. These episodes of rapid evolution are separated by relatively long static spans during which a species may hardly change at all.
The punctuated equilibrium hypothesis attempts to explain a curious feature of the fossil record --- one that has been familiar to paleontologist for more than a century but has usually been ignored. Many species appear to remain unchanged in the fossil record for millions of years --- a situation that seems to be at odds with Darwin’s model of continuous change. Intermediated fossil forms, predicted by gradualism, are typically lacking. In most localities a given species of clam or coral persists essentially unchanged throughout a thick formation of rock, only to be replaced suddenly by a new and different species.
The evolution of North American horse, which was once presented as a classic textbook example of gradual evolution, is now providing equally compelling evidence for punctuated equilibrium. A convincing 50-million-year sequence of modern horse ancestors --- each slightly larger, with more complex teeth, a longer face, and a more prominent central toe ---seemed to provide strong support for Darwin’s contention that species evolve gradually. But close examination of those fossil deposits now reveals a somewhat different story. Horses evolved in discrete steps, each of which persisted almost unchanged for millions of years and was eventually replaced by a distinctive newer model. The four-toed Eohippus preceded the three-toed Miohippus, for example, but North American fossil evidence suggests a jerky, uneven transition between the two. If evolution had been a continuous, gradual process, one might expect that almost every fossil specimen would be slightly different from every year.
If it seems difficult to conceive how major changes could occur rapidly, consider this: an alteration of a single gene in files is enough to turn a normal fly with a single pair of wings into one that has two pairs of wings.
The question about the rate of evolution must now be turned around: does evolution ever proceed gradually, or does it always occur in short bursts? Detailed field studies of thick rock formations containing fossils provide the best potential tests of the competing theories.
Occasionally, a sequence of fossil-rich layers of rock permits a comprehensive look at one type of organism over a long period of time. For example, Peter Sheldon’s studies of trilobites, a now extinct marine animal with a segmented body, offer a detailed glimpse into three million years of evolution in one marine environment. In that study, each of eight different trilobite species was observed to undergo a gradual change in the number of segments --- typically an increase of one or two segments over the whole time interval. No significant discontinuous were observed, leading Sheldon to conclude that environmental conditions were quite stable during the period he examined.
Similar exhaustive studies are required for many different kinds of organisms from many different periods.■ Most researchers expect to find that both modes of transition from one species to another are at work in evolution. Slow, continuous change may be the norm during periods of environmental stability, while rapid evolution of new species occurs during periods of environment stress. But a lot more studies like Sheldon’s are needed before we can say for sure. | |
Passage Five | 学科分类 | 题目 |
社会-历史 | 美国淘金热对艺术的影响 | |
内容回忆 | 待补充 | |
参考阅读 | Moving to the west
The story of the westward movement of population in the united states is, in the main, the story of the expansion of American agriculture-of the development of new areas for the raising of livestock and the cultivation of wheat, corn, tobacco, and cotton. After 1815 improved transportation enabled more and more western farmers to escape a self-sufficient way of life and enter a national market economy during periods when commodity prices were high, the rate of westward migration increased spectacularly. “old America seemed to be breaking up and moving westward,” observed an English visitor in 1817, during the first great wave of migration. Emigration to the west reached a peak in the 1830’s. whereas in 1810 only a seventy of the American people lived west of the Appalachian mountains, by 1840 more than a third lived there.
Why were these hundreds of thousands of setters-most of them farmers some of them artisans-drawn away from the cleared fields and established cities and villages of the East? Certain characteristics of American society help to explain this remarkable migration. The European ancestors of some Americans had for centuries lived rooted to the same village or piece of land until some religious, political, or economic crisis uprooted them and drove them across the Atlantic. Many of those who experienced this sharp break thereafter lacked the ties that had bound them and their ancestors to a single place. Moreover, European society was relatively stratified; occupation and social status were inherited. In American society, however, the class structure was less rigid; some people changed occupations easily and believed it was their duty to improve their social and economic position. As a result, many Americans were an inveterately restless, rootless, and ambitious people. Therefore, these social and economic position. As a result, many Americans were an inveterately restless, rootless, and ambitious people. Therefore, these social traits helped to produce the nomadic and daring settlers who kept pushing westward beyond the fringes of settlement. In addition, there were other immigrants who migrated west in search of new homes, material success, and better lives.
The west had plenty of attractions: the alluvial river bottoms, the fecund soils of the rolling forest lands, the black loams of the prairies were tempting to New England farmers working their rock, sterile land and to southeastern farmers plagued with soil depletion and erosion. In 1820 under a new land law, a farm could be bought for 100. The continued proliferation of banks made it easier for those without cash to negotiate loans in paper money. Western farmers borrowed with the confident expectation that the exploding economy would keep farm prices high, thus making it easy to repay loans when they fell due.
Transportation was becoming less of a problem of those who wished to move west and for those who wished to move west and for those who had far surpluses to send to market. Prior to 1815, western farmers who did not live on navigable waterways were connected to them only by dirt roads and mountain trails.Livestock could be driven across the mountains, but the cost of transporting bulky grains in this fashion was several times greater than their value in eastern markets.The first step toward an improvement of western transportation was the construction of turnpikes.■ These roads made possible a reduction in transportation costs and thus agriculture along their routes.
Two other developments presaged the end of the era of turnpikes and stared a transportation revolution that resulted in increased regional specialization and the growth of a national market economy First came the steamboat; although flatboats and keelboats continued to be important until the 1850’s, steamboats eventually superseded all other craft in the carrying of passengers and freight. Steamboatwere not only faster but also transported upriver freight for about one tenth of what it had previously cost on hand-propelled keelboats. Next came the Erie canal, an enormous project in its day, spanning about 350 miles. After the canal went into operation, the cost per mile of transporting a ton of freight from Buffalo to New York City declined from nearly 20 cents to less that 1 cent. Eventually, the western states diverted much of their produce from the rivers to the Erie Canal, a shorter route to eastern markets. | |
Passage Six | 学科分类 | 题目 |
社会-历史 | 欧洲糖果业的发展和历史 | |
内容回忆 | 待补充 | |
参考阅读 | Seventeenth-Century European Economic Growth In the late sixteenth century and into the seventeenth, Europe continued the growth that had lifted it out of the relatively less prosperous medieval period (from the mid 400s to the late 1400s). Among the key factors behind this growth were increased agricultural productivity and an expansion of trade. Populations cannot grow unless the rural economy can produce enough additional food to feed more people. During the sixteenth century, farmers brought more land into cultivation at the expense of forests and fens (low-lying wetlands). Dutch land reclamation in the Netherlands in the sixteenth and seventeenth centuries provides the most spectacular example of the expansion of farmland: the Dutch reclaimed more than 36.000 acres from 1590 to 1615 alone. Much of the potential for European economic development lay in what at first glance would seem to have been only sleepy villages. Such villages, however, generally lay in regions of relatively advanced agricultural production, permitting not only the survival of peasants but also the accumulation of an agricultural surplus for investment. They had access to urban merchants, markets, and trade routes.
Increased agricultural production in turn facilitated rural industry, an intrinsic part of the expansion of industry. Woolens and textile manufacturers, in particular, utilized rural cottage (in-home) production, which took advantage of cheap and plentiful rural labor. In the German states, the ravages of the Thirty Years' War (1618-1648) further moved textile production into the countryside. Members of poor peasant families spun or wove cloth and linens at home for scant remuneration in an attempt to supplement meager family income. More extended trading networks also helped develop Europe's economy in this period. English and Dutch ships carrying rye from the Baltic states reached Spain and Portugal. Population growth generated an expansion of small-scale manufacturing, particularly of handicrafts, textiles, and metal production in England, Flanders, parts of northern Italy, the southwestern German states, and parts of Spain. Only iron smelting and mining required marshaling a significant amount of capital (wealth invested to create more wealth).
The development of banking and other financial services contributed to the expansion of trade. By the middle of the sixteenth century, financiers and traders commonly accepted bills of exchange in place of gold or silver for other goods. Bills of exchange, which had their origins in medieval Italy, were promissory notes (written promises to pay a specified amount of money by a certain date) that could be sold to third parties. In this way, they provided credit. At mid-century, an Antwerp financier only slightly exaggerated when he claimed, “0ne can no more trade without bills of exchange than sail without water." Merchants no longer had to carry gold and silver over long, dangerous journeys. An Amsterdam merchant purchasing soap from a merchant in Marseille could go to an exchanger and pay the exchanger the equivalent sum in guilders, the Dutch currency. The exchanger would then send a bill of exchange to a colleague in Marseille, authorizing the colleague to pay the Marseille merchant in the merchant's own currency after the actual exchange of goods had taken place. Bills of exchange contributed to the development of banks, as exchangers began to provide loans. Not until the eighteenth century, however, did such banks as the Bank of Amsterdam and the Bank of England begin to provide capital for business investment. Their principal function was to provide funds for the state.
The rapid expansion in international trade also benefitted from an infusion of capital, stemming largely from gold and silver brought by Spanish vessels from the Americas. This capital financed the production of goods, storage, trade, and even credit across Europe and overseas. Moreover an increased credit supply was generated by investments and loans by bankers and wealthy merchants to states and by joint-stock partnerships—an English innovation (the first major company began in 1600). Unlike short-term financial cooperation between investors for a single commercial undertaking, joint-stock companies provided permanent funding of capital by drawing on the investments of merchants and other investors who purchased shares in the company. | |
Passage Seven | 学科分类 | 题目 |
自然科学 | 煤炭开采技术发展 | |
内容回忆 | 待补充 | |
参考阅读 | Stream Deposit A large, swift stream or river can carry all sizes of particles, from clay to boulders. When the current slows down, its competence (how much it can carry) decreases and the stream deposits the largest particles in the streambed. If current velocity continues to decrease - as a flood wanes, for example - finer particles settle out on top of the large ones. Thus, a stream sorts its sediment according to size. A waning flood might deposit a layer of gravel, overlain by sand and finally topped by silt and clay. Streams also sort sediment in the downstream direction. Many mountain streams are choked with boulders and cobbles, but far downstream, their deltas are composed mainly of fine silt and clay. This downstream sorting is curious because stream velocity generally increases in the downstream direction. Competence increases with velocity, so a river should be able to transport larger particles than its tributaries carry. One explanation for downstream sorting is that abrasion wears away the boulders and cobbles to sand and silt as the sediment moves downstream over the years. Thus, only the fine sediment reaches the lower parts of most rivers.
A stream deposits its sediment in three environments: Alluvial fans and deltas form where stream gradient (angle of incline) suddenly decreases as a stream enters a flat plain, a lake, or the sea; floodplain deposits accumulate on a floodplain adjacent to the stream channel; and channel deposits form in the stream channel itself. Bars, which are elongated mounds of sediment, are transient features that form in the stream channel and on the banks. They commonly form in one year and erode the next. Rivers used for commercial navigation must be recharged frequently because bars shift from year to year. Imagine a winding stream. The water on the outside of the curve moves faster than the water on the inside. The stream erodes its outside bank because the current's inertia drives it into the outside bank. At the same time, the slower water on the inside point of the bend deposits sediment, forming a point bar. A mid-channel bar is a sandy and gravelly deposit that forms in the middle of a stream channel.
flow in a single channel. In contrast, a braided stream flows in many shallow, interconnecting channels. A braided stream forms where more sediment is supplied to a stream than it can carry. The stream dumps the excess sediment, forming mid-channel bars. The bars gradually fill a channel, forcing the stream to overflow its banks and erode new channels. As a result, a braided stream flows simultaneously in several channels and shifts back and forth across its floodplain. Braided streams are common in both deserts and glacial environments because both produce abundant sediment. A desert yields large amounts of sediment because it has little or no vegetation to prevent erosion. Glaciers grind bedrock into fine sediment, which is carried by streams flowing from the melting ice. If a steep mountain stream flows onto a flat plain, its gradient and velocity decrease sharply. As a result, it deposits most of its sediment in a fan-shaped mound called an alluvial fan. Alluvial fans are common in many arid and semiarid mountainous regions.
A stream also slows abruptly where it enters the still water of a lake or ocean. The sediment settles out to form a nearly flat landform called a delta. Part of the delta lies above water level, and the remainder lies slightly below water level. Deltas are commonly fan-shaped, resembling the Greek letter "delta" (∆). Both deltas and alluvial fans change rapidly. Sediment fills channels (waterways), which are then abandoned while new channels develop as in a braided stream. As a result, a stream feeding a delta or fan splits into many channels called distributaries. A large delta may spread out in this manner until it covers thousands of square kilometers. Most fans, however, are much smaller, covering a fraction of a square kilometer to a few square kilometers. The Mississippi River has flowed through seven different delta channels during the past 5,000 to 6,000 years. But in recent years, engineers have built great systems of levees (retaining walls) in attempts to stabilize the channels. | |
Passage Eight | 学科分类 | 题目 |
自然科学类-动物 | 鸟类特有的双重呼吸系统 | |
内容回忆 | 彗星有长周期和短周期,还有Oort cloud形成的原因 | |
参考阅读 | Latitude and Biodiversity When we look at the way in which biodiversity (biological diversity) is distributed over the land surface of the planet, we find that it is far from even. The tropics contain many more species overall than an equivalent area at the higher latitudes. This seems to be true for many different groups of animals and plants.
Why is it that higher latitudes have lower diversities than the tropics? Perhaps it is simply a matter of land area. The tropics contain a larger surface area of land than higher latitudes—a fact that is not always evident when we examine commonly used projections of Earth’s curved surface, since this tends to exaggerate the areas of land in the higher latitudes—and some biogeographers regard the differences in diversity as a reflection of this effect. But an analysis of the data by biologist Klaus Rohde does not support this explanation. Although area may contribute to biodiversity, it is certainly not the whole story; otherwise, large landmasses would always be richer in species.
Productivity seems to be involved instead, though perhaps its influence is indirect. Where conditions are most suitable for plant growth—that is, where temperatures are relatively high and uniform and where there is an ample supply of water—one usually finds large masses of vegetation. This leads to a complex structure in the layers of plant material. In a tropical rain forest, for example, a very large quantity of plant material builds up above the surface of the ground. There is also a large mass of material, developed below ground as root tissues, but this is less apparent. Careful analysis of the above ground material reveals that it is arranged in a series of layers, the precise number of layers varying with age and the nature of the forest. The arrangement of the biological mass ("biomass") of the vegetation into layered forms is termed its “structure” (as opposed to its “composition,” which refers to the species of organisms forming the community). Structure is essentially the architecture of vegetation, and as in the case of tropical forests, it can be extremely complicated. In a mature floodplain tropical forest in the Amazon River basin, the canopy (the uppermost layers of a forest, formed by the crowns of trees) takes on a stratified structure. There are three clear peaks in leaf cover at heights of approximately 3, 6, and 30 meters above the ground; and the very highest layer, at 50 meters, corresponds to the very tall trees that stand free of the main canopy and form an open layer of their own. So, such a forest contains essentially four layers of canopy. Forests in temperate lands often have just two canopy layers, so they have much less complex architecture.
Structure has a strong influence on the animal life inhabiting a site. It forms the spatial environment within which an animal feeds, moves around shelters, lives, and breeds. It even affects the climate on a very local level (the "microclimate") by influencing light intensity, humidity, and both the range and extremes of temperature. An area of grassland vegetation with very simple structure, for example, has a very different microclimate at the ground level from that experienced in the upper canopy. Wind speeds are lower, temperatures are lower during the day (but warmer at night), and the relative humidity is much greater near the ground. The complexity of the microclimate is closely related to the complexity of structure in vegetation, and generally speaking, the more complex the structure of vegetation, the more species of animal are able to make a living there. The high plant biomass of the tropics leads to a greater spatial complexity in the environment, and this leads to a higher potential for diversity in the living things that can occupy a region. The climates of the higher latitudes are generally less favorable for the accumulation of large quantities of biomass; hence, the structure of vegetation is simpler and the animal diversity is consequently lower. |